IEA ECES IA Annex 22
Thermal Energy Storage in Horticultural Greenhouses
Report to ExCo

November 18-19, 2009
Mie, Japan

Objectives

• To define the challenges of energy efficient greenhouse systems requiring thermal energy storage techniques and determine methods for overcoming the challenges.
• To determine the most effective storage technologies for greenhouse applications, including seasonal storage, and short-term storage.
• To develop deployment strategies for these prospective technologies as integrated components of greenhouse systems.
Countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution(s)</th>
<th>First Experts' Meeting</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>VITO</td>
<td>-</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Technical University of Sofia</td>
<td>-</td>
<td>Not Confirmed</td>
</tr>
<tr>
<td>Canada</td>
<td>Environment Canada</td>
<td>✓</td>
<td>Withdrawn</td>
</tr>
<tr>
<td>France</td>
<td>BRGM Service EAU/RMD</td>
<td>-</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Netherlands</td>
<td>IF Technology</td>
<td>✓</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Norway</td>
<td>NIVA Veksthusringen NTNU</td>
<td>✓</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Spain</td>
<td>Universidad Politecnica de Valencia</td>
<td>-</td>
<td>Not Confirmed</td>
</tr>
<tr>
<td>Sweden</td>
<td>Royal Institute of Technology</td>
<td>✓</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Turkey</td>
<td>Çukurova University</td>
<td>✓</td>
<td>Confirmed</td>
</tr>
</tbody>
</table>

First Experts Meeting and Workshop October 22-23, 2009

- Total of 17 participants from Canada (9), Netherlands (1), Norway (3), Sweden (1), Turkey (1), USA (2)
- Presentations from:
 - Companies 2
 - Universities 2
 - Government 1
- Belgium and France sent short information on their projects
- Video clip from Rubitherm, Germany on PCM project in greenhouse of botanical garden in Berlin
- RETScreen training session
State-of the-art

Greenhouse production

- Total greenhouse area
 - 50,000 - 10,000 - 300 ha
- Energy consumption
 - 55,000 m³ of oil - 450,000 m³ gas/y ha...
- Sources of energy
 - Oil, gas, coal, electricity
- Share of energy in total cost of production
- Standard greenhouse
 - Heating and cooling systems
 - CO₂ control mechanisms
 - Lighting

“for greener greenhouse production”

State-of the-art

Previous projects

- Short term storage
 - Water tank, PCM
- Long term storage
 - Paraffin, ATES, BTES
- System integration
 - Distribution systems
- Energy savings
 - 20 - 60 % increase
- Increase in product yields
 - 10 - 40 % increase
- Economics
 - Semi vs closed, $/kWh

“lessons learned...”
Boundary conditions

- Climate data
- Energy requirement
- Plant varieties
 - Temperature, humidity, evapo-transpiration, growth parameters,...
- Air exchange
- CO₂
- Dehumidification
- Control algorithms

"if you can handle a greenhouse you can handle any building"

Technology: ATES

- Pre-investigations
 - Aquifer properties
- Sources of energy
- Design
 - Wells
 - With or without heat pump
- Control strategies

"First ATES greenhouse project in Netherlands is 10 years old"
Technology : BTES

• Pre-investigations
 – Thermal response test
• Design
 – Ground heat exchanger
 – Borehole configuration
 –
• Control strategies

“stratified thermal borehole storage”

Technology : PCM

• Short term storage
 – Buffer tank
 – Peak shaving
 – Enhancing stratification in water tanks
 – Temperature control
• PCM choices and criteria
 – Organics & inorganics
 – melting range, latent heat, ...
• Containers
 – Various size, shape, material
• Structures
 – PCM towers in the greenhouse

“material may be very cheap, but with container and preparation cost increases”
Technology: Water tank

- Short and long term
- Buffer tank
- Storing heat from CO_2 production in summer
- Stratification
- Cost
 - 100 Euro/m3

“cheapest storage”

Technology: Short term + Long term

- BTES + Water tank and/or PCM
- ATES + Water tank and/or PCM
- Control strategies
- Optimization

“smart strategies for optimization”
Distribution systems

- Centralized air distribution
- Water distribution
 - Pipes, channels
- Fan coils
- AHUs

“increased air movement in the greenhouse having a positive effect on product yield”

Models

- Developing simulation models
 - Using TRYNSYS, ...
- Models for ground coupled systems
 - EED, ...
- RETScreen
 - include projects in RETScreen database
- Models validation and evaluation
Presented Projects

<table>
<thead>
<tr>
<th>Country</th>
<th>Previous projects</th>
<th>Anex 22 demo project(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>ATES, BTES, PCM, ground coupled gas absorption HP</td>
<td>ATES+HP for strawberry greenhouse</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>ATES for tomatoes</td>
</tr>
<tr>
<td>NL</td>
<td>ATES, ATES+water</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td>BTES+water for tomatoes</td>
</tr>
<tr>
<td>Sweden</td>
<td>-</td>
<td>ATES or BTES +short term storage for ?</td>
</tr>
<tr>
<td>Turkey</td>
<td>ATES, PCM</td>
<td>PCM for temperature control in root zone of zucchinis</td>
</tr>
</tbody>
</table>

Organization of Activities
Four Working Groups

- WG1: State-of-the-art
- WG2: Modeling
- WG3: Systems
- WG4: Optimization
WG1
Leader: (Canada), Belgium

- Greenhouse information (potential, production, design, plants, boundary conditions)
- Survey of modeling climate in greenhouses (who, how,..)
- Standard systems for greenhouses
- Existing systems for low energy greenhouses
- Literature survey on countries not participating in the Annex

WG2
Leader: Netherlands, (Canada)

- Identify TRYNSYS Greenhouse Modelers (TGM) and create a platform for information exchange
- Define and develop missing routines for existing models like TRYNSYS
- Collection of data on greenhouse construction materials
- Validation of the model for a standard greenhouse and (semi-) closed greenhouse
WG3
Leader: Norway, Netherlands
• Climate requirements and energy demand for traditional system
• Develop HVAC schematics
• Include/exclude lighting
• Sector feedback
• Optimal system configurations

WG4
Leader: Sweden, Turkey
• Define reference greenhouses
• System modeling
• Economical and environmental impact
Workplan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>D3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D4</td>
</tr>
</tbody>
</table>

Deliverables

- **D1**: State of the art report from each country (12M)
- **D2**: Report from modeling – including developed models and validation (24M)
- **D3**: Optimal system configurations (18M)
- **D4**: Final report (30M)
- **D5**: Web page (already started)

http://www.fskab.com/annex%2022/
Workplan until next meeting

<table>
<thead>
<tr>
<th>Actions</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of TGMs</td>
<td>Dec 1, 2009</td>
</tr>
<tr>
<td>Webpage</td>
<td>Next Experts’ Meeting</td>
</tr>
<tr>
<td>Country state-of-the-art report presentations</td>
<td>Next Experts’ Meeting</td>
</tr>
<tr>
<td>Information exchange platform possibilities</td>
<td>Next Experts’ Meeting</td>
</tr>
</tbody>
</table>

Next meeting will be hosted by IF Technologies in the Netherlands on April 26-28, 2010.